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Final Technical Report - NAGW-2442

SUMMARY

This document constitutes the final technical report for grant NAGW-2442 of the Neptune

Data Analysis Program, which supported research concerning atmospheric dynamics on Neptune.

Professor Von R. Eshleman was the principal investigator. David P. Hinson was a Co-

Investigator. The grant covered the period 1 March 1991 through 31 August 1994, including a six

month no-cost extension.

Funding from this grant resulted in publication of one journal article and one book chapter

as well as presentation of results at two conferences and in numerous seminars. A complete

bibliography is given below. A copy of the journal article is attached along with abstracts from the

book chapter and the conference presentations.

With support from this grant we extended our analysis and interpretation of the Voyager 2

radio occultation data beyond what could be accomplished with funding from the Voyager Project.

This research contributed to an improvement in our basic understanding of atmospheric dynamics

on Neptune. The highlight was the discovery and characterization of inertio-gravity waves in the

troposphere and stratosphere. Results include measures of basic wave properties, such as

amplitudes and vertical wavelengths, as well as estimates of the effect of the waves on the

photochemistry and momentum balance of the upper stratosphere.

This investigation also yielded a better understanding of the potential of radio occultation

experiments for studies of atmospheric waves. At the same time we developed new methods of

data analysis for exploiting these capabilities. These are currently being applied to radio occultation

data obtained with the Magellan spacecraft to study waves in the atmosphere of Venus. Future

planetary missions, such as Mars Global Surveyor and Cassini, will benefit from these

accomplishments.





Final Technical Report - NAGW-2442

BIBLIOGRAPHY

Publications:

Hinson, D. P., and J. A. Magalh_es 1993. Inertio-gravity waves in the atmosphere of Neptune.

Icarus 105, 142-161.

Ingersoll, A. P., C. D. Barnet, R. F. Beebe, F. M. Flasar, D. P. Hinson, S. S. Limaye, L. A.

Sromovsky, and V. E. Suomi 1995. Dynamic meteorology of Neptune. In Neptune (D.

Cruikshank, Ed.), in press. Univ. of Arizona Press, Tucson.

Abstracts and Conference Presentations:

Hinson, D. P., and J. A. Magalhaes. A wave observed in the atmosphere of Neptune. Presented

at the 23rd Annual meeting of the AAS Division for Planetary Sciences, 4-8 November 1991,

Palo Alto, California. Abstract published in Bull. American Astronom. Soc., vol. 23, no. 3,

p. 1164, 1991.

Hinson, D. P. An inertia-gravity wave observed in the atmosphere of Neptune. Presented at the

Space Science Series Conference on Neptune and Triton in Tucson, Arizona, 6-10 January

1992 (hosted by the University of Arizona).





Final Technical Report - NAGW-2442

Abstract of chapter published in Neptune (D. Cruikshank, Ed.). Univ. of
Arizona Press, Tucson.
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Although Earth-based observations provide hints of Neptune's
dynamic activity, most of the observations of cloud patterns,
winds, and horizontal variations in temperature are from Voy-
ager. The wind speed varies from 400 m s -1 westward at the

equator to 250 m s -1 eastward al -700 latitude. As on all the
giant planets, the winds decay with height in the stratosphere.
The meridional contrasts in temperature are small in the upper
troposphere and lower stratosphere, with mid-latitude minima
that are strangely reminiscent of those on Uranus. The oscil-

lations and motions of Neptune's large spots are more regular
than those of Jupiter and Saturn. During the Voyager observa-
tions, the Great Dark Spot moved steadily equatorward while i_

[1]
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oscillated in shape with an 8-day period. The latitude and lon-
gitude of Dark Spot 2 oscillated with a 36-day period. The small
elements within each major feature appeared and disappeared in
less than a day. Such activity is remarkable for a planet whose
emitted power per unit area is 1/20 that of Jupiter and 1/400
that of the Earth. Weak viscosity can account for the decay
of winds in the stratosphere and models without viscosity can
account for the spot oscillations. But the wind velocities and
temperatures vs. latitude--especially the differences among the
giant planets--have not been explained. Major unknowns con-
cern convection and latent heat release, the interaction with
Neptune's fluid interior, and the importance of internal energy
relative to solar energy in driving the circulation.

I. INTRODUCTION

Planetary atmospheres exhibit a wide range of dynamical phenom-
ena that could not have been predicted from models based on observa-

tions of Earth alone. Studying the planets teaches humility. We learn

how inventive nature is and how limited our understanding is. Such
humility can be useful as we attempt to apply our models to climate

states that have never occurred before on Earth, but could occur as we
change the composition of the atmosphere and the character of the sur-

face. From the geologic record we know that the Earth's climate has

changed drastically--well beyond the limits seen in historical times.

Planets provide even more drastic examples of different climates. The

insights gained by considering weather and climate processes in exag-
gerated form on other planets can help us understand such processes
on Earth.

In its grand tour of the outer solar system, Voyager provided many
surprises and several insights into the dynamics of planetary atmo-

spheres. Although the long-lived storms and multiple jet streams of

Jupiter had been observed for over 300 years, Voyager revealed chaotic
small-scale activity that made the large stable structures even more

interesting. We learned something about the stability of rotating fluid

masses--vortices, and about the persistence of weather patterns in gen-

eral. When Voyager determined the rotation rate of Saturn's interior,
it became clear that Saturn's winds approach 500 m s-l--three times

greater than Jupiter's, despite the fact that Saturn has less power to
drive the winds. Voyager images of Uranus showed that the cloud bands

are oriented parallel to latitude circles, as they are on the other giant
planets, even though the Sun was almost directly overhead at the south

pole at the time of the Voyager encounter. In these cases we learned
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Presented at the 23rd Annual meeting of the AAS Division for Planetary

Sciences, 4-8 November 1991, Palo Alto, California. Abstract published in Bull.

American Astronom. Soc., vol. 23, no. 3, p. 1164, 1991.

09.04

A Wave Observed in the Atmosphere of Neptune

D. P. Hinson (Stanford) and J. h. Magalh_es (NASA/ARC)

We have identified a wave in the atmosphere of Neptune through analy-

sis of radio occultation data from Voyager 2. We employed the following

procedure. First, we obtained a vertical profile of number density (n),

pressure (p), and temperature (T) vs. radius through Abel inversion of
the data. The profile spans pressures from a few tenths of a mb to more

than 1 bar. Second, we separated structure on different spatial scales

by filtering the profile. Low-pass output from the filter gives the quies-

cent background structure of the atmosphere at a resolution of 20kin,

comparable to a pressure scale height. High-pass output from the filter

isolates the perturbations in temperature (6T) and number density (6n)

relative to this background structure on spatial scales less than 20 km.

The profiles of 6T and 6n have a diffraction-limited vertical resolution of

1-2 km. Next, we applied a simple, linear theory for atmospheric waves

to model the behavior expected for a wave propagating through the ob-

served background structure of Neptune's atmosphere. Agreement be-

tween predictions of the theory and observations of 6T and 6n vs. p gives

strong evidence for the presence of a wave at 44"S lat (planetocentric).

The wave appears to propagate with little or no attenuation at pressures

between 3 and 100 mb. Observations at lower pressures are hampered
by noise limitations of the data; however, we hope to extend the obser-

vations to greater pressures with further analysis. Preliminary results

include a vertical wavelength of about 1/3 to 1/2 of a pressure scale

height and an amplitude of about 0.2 K at 80 mb, increasing to about

1 K at 6 rob. Theory and observations suggest that the wave begins to
break at a pressure near 1 mb, leading to eddy mixing of the atmosphere

at lower pressures. Other basic properties of the wave, including its clAs-

sification (e.g., Rossby, inertia-gravity .... ), remain uncertain at present.

Preliminary results for Neptune will be compared with analogous results

derived previously for Uranus (Hinson and Magafh_es 1991, Equatorial

waves in the stratosphere of Uranus, Icarus, in press).

This work is funded under NASA grant NAGW-2442 (NDAP).
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Presented at the Space Science Series Conference on Neptune and Triton in

Tucson, Arizona, 6-10 January 1992 (hosted by the University of Arizona).

An Inertia-Gravity Wave Observed in the Atmosphere of Neptune

David P. Hinson

Center for Radar Astronomy

Stanford University

Atmospheric waves on Neptune can be identified and studied through use of radio

occultation data from Voyager 2. The analysis and interpretation of the data proceeds

as follows. First, I obtained a vertical profile of number density (n), pressure (p),

and temperature (T) vs. radius through Abel inversion of the data. The profile spans

pressures from a few tenths of amb to more than 1 bar. Second, I separated structure

on different spatial scales by filtering the profile. Low-pass output from the filter

gives the quiescent background structure of the atmosphere at a resolution of 15 km,

comparable to a pressure scale height. For studies of atmospheric waves, the key

parameter characterizing the background structure is the buoyancy (or Brunt-V_is£1_.)

frequency (N) which I computed directly from the filtered temperature profile. High-

pass output from the filter isolates the perturbations in temperature (_T) and number
density (6n) relative to this background structure on spatial scales tess than 15 kin.

The profiles of 6T and 6n have a diffraction-limited vertical resolution of about 1 km.

I applied a linear theory for atmospheric waves to model the behavior expected

for a wave propagating through the background structure observed on Neptune. The

theory includes the effect of weak vertical wind shear and yields a WKB solution for

the wave's vertical structure (cf. Lindzen 1981, J. Geophys. Res. 86, 9707-9714). A
central feature of this solution is that both wind shear and vertical variations in N can

cause the wave amplitude and vertical wavelength to vary distinctively with height.

Agreement between predictions of the theory and observations of 6T and Sn vs. p gives

strong evidence for the presence of an inertia-gravity wave at 44°S (planetocentric),

230°W (NLS). [A Rossby-wave interpretation of the data encounters serious problems

arising from the implied extremely low frequency of the wave (cf. French and Gierasch

1974, J. Atmos. Sci. 31, 1707-1712).] The wave appears to propagate with little or

no attenuation at pressures between 3 and 100 mb. Observations are hampered by

noise limitations at lower pressures but should be possible at greater pressures with

further analysis. Results to date include a vertical wavelength of about 8 km and an

amplitude of 0.2 K at 80 mb, increasing to 1 K at 6 mb. Predictions of the theory show
improved agreement with the data when a uniform vertical wind shear is included in

the theoretical model. When combined with the value for wind shear at this latitude

inferred from Voyager IRIS observations (Conrath et al. 1991, J. Geophys. Res., in

press), this result provides an important constraint on the zonal phase speed -- a wave

property which cannot otherwise be inferred from these observations. In future work,

I hope to estimate the momentum flux carried by the wave, the breaking level, and

the eddy mixing and acceleration of the mean winds that accompany wave dissipation

(cf. Hinson and Magalh£es 1991, Icarus, in press).

This work is funded under NASA grant NAGW-2442 (NDAP).
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A refined analysis of Voyager 2 radio occultation data has re-
vealed distinct, quasi-periodic temperature variations in the tropo-
sphere and stratosphere of Neptune. Temperature oscillations with
amplitudes of 0.1-1 K and vertical wavelengths of 1-10 km are
present at latitudes 61°N (ingress) and 45°S (egress). We used
techniques of spectral analysis to identify the predominant perio-
dicities of the data and applied digital filters to isolate signal
perturbations within selected wavelength passbands. Basic results
include detailed vertical profiles of the temperature perturbations
associated with these atmospheric waves. The data also provide
a weak constraint on the horizontal structure--the horizontal
wavelength probably exceeds the vertical wavelength by at least
an order of magnitude. We confined our interpretation to two
waves in the stratosphere whose vertical structure was character-

ized over 9 and 15 cycles of oscillation, respectively, spanning 2
to 3 pressure scale heights. In both cases, the observations are

consistent with the characteristics of inertio-gravity waves, but
cannot be reconciled with a Rossby-wave interpretation. We ap-
plied standard theory to model the wave behavior and to estimate

the wave contributions to the eddy mixing and momentum budget
of the middle atmosphere. The exponential growth of wave ampli-
tude with height should result in overturning, or wave breaking,
at pressures less than about 0.5 mbars for one wave and about 3

mbars for the other. The process of wave dissipation, though poorly
understood, may be a significant source of "eddy mixing" on
Neptune, with wave-generated eddy diffusivities as large as 50
m 2 sec-1. The wave forcing of the mean flow that accompanies
dissipation could alter the zonal winds by as much as about 9 m
sec- 1 per planet rotation. © 1993AcademicPress,Inc.

INTRODUCTION

The Voyager 2 spacecraft completed its "grand tour"

of the outer Solar System with a close flyby of Neptune

in August 1989 (Stone and Miner 1989). The sequence of
near encounter observations included a radio occultation

0019-1035/93 $5.00
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experiment for remote sensing of Neptune's atmosphere

at mid-latitudes in both hemispheres. Results already de-

rived from the data include (Lindal 1992): a temperature

profile spanning pressures from 0.35 to 6300 mbars; a

helium abundance (from comparison with Voyager IRIS.
data) of 19 - 3% by volume; detection of a thin methane

cloud layer near the 1800-mbar pres sure level; an inferred
methane mixing ratio of about 2% below the condensation

level; detection of substantial signal attenuation in the

deeper troposphere, which was attributed to absorption
by ammonia vapor; an ammonia mixing ratio of 500 _

150 parts per billion at the level where the pressure and

temperature are 6300 mbars and 135 K, respectively; and
an inferred prograde zonal wind speed of 176 -_+32 m
sec-] in the troposphere at 60°N latitude.

Against this background, we have used the Voyager 2

radio occultation data to conduct a complementary inves-

tigation of atmospheric waves in the troposphere and

stratosphere of Neptune. We extracted our principal re-

suits from the basic measurements through use of the
standard, "Abel transform" algorithm for reduction of

radio occultation data, supplemented by digital filters spe-

cialized to the study of atmospheric waves. This approach

to data analysis represents an extension of techniques

developed and applied originally by Hinson and Magal-

hfies (1991) in a similar study of atmospheric waves on
Uranus.

We restricted our attention to the stratosphere and up-

per troposphere, where the atmosphere is stably stratified.

We also limited the investigation to atmospheric structure
on spatial scales exceeding the Fresnel scale, F, which

is about 1 km for the Neptune occultation geometry. This
second condition is convenient for two reasons (cf. Hin-

son and Magalhfies 1991). First, diffraction effects are

negligible for atmospheric structure on scales exceeding
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F by a factor of 2-3. The propagation of electromagnetic
waves through such structure can therefore be modeled

accurately through use of geometrical optics, which sim-

plifies the analysis considerably. Second, frequency (or

phase) data are far more sensitive than amplitude data to

atmospheric structure over these spatial scales. Accord-

ingly, we based our investigation entirely on frequency

measurements, which led to a more compact presentation
of the basic results.

Conrath et al. (1991a) have identified a planetary-scale
wave on Neptune in the latitude band between 10°S and

30°S through analysis of infrared spectra obtained in a

global mapping sequence with the Voyager IRIS instru-

ment. The vertical scale of the wave is most likely compa-

rable to or greater than one pressure scale height (-20
kin), the vertical resolution of the instrument. We show

here through analysis of Voyager radio occultation data

that the atmosphere of Neptune also exhibits distinct,

quasi-periodic spatial variations in temperature on verti-

cal scales of about 1-10 km. Structure on these scales is

present at both occultation ingress (6 I°N) and occultation
egress (45°S). However, due to differences in their loca-

tions and vertical wavelengths, the wave features ob-

served by these two instruments are probably not related.

(See Ingersoll et al. [1993] for a comprehensive review

of atmospheric dynamics, including waves, on Neptune.)

One aspect of our results deserves emphasis. The ampli-

tude in temperature of an atmospheric wave generally

increases exponentially with height, but this growth in

wave amplitude is eventually limited by convective insta-

bility. In Neptune's stratosphere, the maximum amplitude

is less than 2 K when the vertical wavelength is 5 km.

Our ability to identify and accurately characterize such

waves illustrates the sensitivity and vertical resolution of

the radio occultation technique.

Apart from their intrinsic interest, atmospheric waves
deserve study for several reasons. It is well known from

terrestrial research that waves can have a substantial im-

pact on the momentum budget and thermal structure of

the middle atmosphere (i.e., the region bounded by the

tropopause and homopause). Estimates of the wave forc-

ing of the mean flow that accompanies dissipation can

thus contribute to a better understanding of the dynamical

state of the atmosphere. Atmospheric waves also respond

sensitively to wind shear and to changes in the background

stratification so that observations of propagating waves
can in principle reveal characteristics of the basic atmo-

spheric structure and circulation (cf. Flasar and Gierasch

1986). Moreover, the implications of wave studies go be-

yond the subject of atmospheric dynamics. By generating
eddy mixing during dissipation, waves can enhance the

transport of trace constituents and thereby influence the

photochemistry of the upper atmosphere. This investiga-

_llhr _2lhr
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FIG. 1. Schematic view from Earth of Neptune and the trajectory

of Voyager 2 (from Lindal 1992). The spacecraft position is marked at

1-hr intervals relative to the time at closest approach to Neptune. Radio

occultation measurements of the neutral atmosphere began near 61°N

latitude and ended near 45°S. The distance from the spacecraft to the

center of Neptune increased during the occultation from about 30,500

km at ingress to about 76,900 km at egress. The distance from spacecraft
to Earth was about 4.43 x 109 km.

tion is motivated by an interest in these diverse aspects
of wave behavior.

OBSERVATIONS AND DATA ANALYSIS

This section begins with a discussion of the experiment

geometry, the relevant spacecraft and ground equipment,

and the initial steps of data processing. We then describe
the procedure used to extract results of interest from

the basic measurements. We include a discussion of the

standard algorithm for reduction of radio occultation

data--the Abel transform--which is based on the laws

of geometrical optics. However, as the mathematical

foundation for this algorithm is well established (Fjeldbo

and Eshleman 1968, Fjeldbo et al. 1971, Eshleman 1973,

Tyler 1987), we limit the discussion to general concepts

and parameter definitions. We then introduce a type of
digital filter that is central to this investigation.

Figure 1 shows the view from Earth of Voyager 2 as it

passed behind Neptune. Subsequent sections give a more

detailed description of the experiment geometry.

The Voyager 2 spacecraft carries a temperature-con-

trolled "ultrastable" quartz oscillator (USO) designed to
provide a steady reference signal for use in radio occulta-

tion experiments (Eshleman et al. 1977). During the occul-

tation by Neptune, the spacecraft employed the USO in

generating a pair of signals at coherently related frequen-

cies of 2296 and 8420 MHz (wavelengths of 13.1 and 3.6
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cm)withanexactfrequencyratioof 3: 11.Thesesignals
arecommonlyreferredto ass-band and x-band, respec-
tively. Both signals were amplified and transmitted contin-

uously without modulation in right-circular polarization

through the 3.7-m-diameter spacecraft antenna. The per-

formance of the USO and other spacecraft radio equip-

ment is such that stochastic variations in the frequency

of the radiated signals do not exceed a few parts in 1012

over the time scales of interest here (about 1-100 sec).

The signals transmitted by Voyager 2 during the Nep-

tune occultation were received by three independent

ground antennas (Tyler et al. 1989): the 70-m-diameter

antenna of the NASA Canberra Deep Space Communica-
tions Complex (Australia), which recorded data at both

wavelengths; the 64-m antenna of the Parkes Radio As-

tronomy Observatory (Australia), which recorded data
only at 3.6 cm; and the 64-m antenna of the Institute of

Space and Astronautical Science (Japan), which recorded

data only at 13.1 cm. As the Camberra tracking station

yielded data with a higher signal-to-noise ratio (SNR) at

both wavelengths than its counterparts, only the data from
Canberra are considered here.

The radio signals received at Canberra were amplified,

filtered, heterodyned (mixed) to baseband, digitized to 8-

bit samples, and recorded on computer tapes at sampling

rates of 50,000 sec-1. All receiving equipment was de-

signed to operate without degrading the inherent fre-

quency stability of the signals radiated by Voyager 2. This

combination of spacecraft and ground equipment yielded
preingress and postegress SNRs in a l-Hz bandwidth of

about 900 (29.5 dB) and 33,000 (45.2 dB) at wavelengths
of 13.1 and 3.6 cm, respectively.

After receiving copies of the data tapes from Canberra,

we applied standard techniques of digital signal processing

to measure signal parameters of interest (cf. Bracewell

1986, Oppenheim and Schafer 1975, Brigham 1974). First,
we used a bandpass filter to remove a substantial amount

of thermal noise from the data. This step reduced the

sampling rate by a factor of 16 while preserving all useful

information contained in the radio signals from Voyager

2. We then obtained time histories of signal frequency,

f(ti), through spectral analysis (Lipa and Tyler 1979). (The
integer index i is included as a reminder that data are

sampled discretely.) We computed results at sampling
rates of 24.41, 12.21, and 6.10 sec- i for the measurements

at both wavelengths. This range of sampling rates was

chosen to include both higher values, which provide finer

spatial resolution, as well as lower values, which reduce
fluctuations caused by thermal noise. Unless noted other-

wise, all results presented below were obtained from data

with a sampling rate of 12.21 sec -I. However, we con-
firmed the reliability of all results and tested their sensitiv-

ity to the effects of thermal noise by using data at the

higher and lower sampling rates. These dual-wavelength

measurements off are the basis for our studies of atmo-

spheric waves and the background thermal structure in

the troposphere and stratosphere of Neptune.
The full procedure for reducing radio occultation data

from an oblate planet like Neptune is described in detail

by Lindal (1992). This formalism properly accounts for the

distortion of isopycnal surfaces caused by gravitational,

centrifugal, and Coriolis forces. While this rigorous ap-
proach is essential to obtaining accurate results from the

deeper troposphere of Neptune (e.g., for inferring the

local zonal wind speed and the abundances of CH 4 and

NH3), we found that a less accurate but much simpler

procedure can yield reliable results at pressures of
0.1-1000 mbars, the range of interest here. In this alter-

nate approach, we used a fitted sphere to model the local

shape of Neptune near ingress or egress. Model parame-
ters were chosen so as to mimic the effect of oblateness

on the radio signals. We then reduced the data by applying

the simpler formalism appropriate to a spherical atmo-
sphere, as described below, but using an effective local

center of curvature that is displaced from Neptune's cen-
ter of mass.

We constructed the equivalent spherical models for

Neptune's atmosphere in two steps. First, we computed

the dynamical shape of a selected isopycnal surface (cf.
Lindal et al. 1985). This requires a measure of the absolute

radius of the surface at a reference latitude (obtained from

the radio occultation data) as well as measurements of

the gravity field (Anderson et al. 1992), Neptune's rotation

rate (Warwick et al. 1989), and the profile of zonal wind

speed as a function of latitude (Limaye and Sromovsky

1991). Second, we used these results for the dynamical
shape to calculate the location of the effective center of

curvature at the two regions of interest (near 61°N and

45°S) taking into account the experiment geometry. 1 A
complication arises in that the location of the center of

curvature varies with time during the experiment as a

consequence of spacecraft motion, the experiment geom-
etry, and the variation of Neptune's shape with latitude
and pressure. However, this motion of the center of curva-

ture was found to have an insignificant effect on the re-

trieved temperature profiles over the range of pressures
considered here. Accordingly, we used a fixed center of

curvature in reducing the data at ingress or egress.

The remaining steps of data analysis rely on the assump-

1The location of the effective center of curvature depends on: (1) the
positions relative to Neptune of the spacecraft and the ground antenna
(with appropriate light propagation-time corrections); (2) the orientation
of the spin axis; (3) the projected shape of the isopycnal surface as
viewed from the spacecraft and the ground antenna (i.e., Neptune's
limb); and (4) the curvature of the isopycnal surface in the plane con-
taining the effective center of curvature, the spacecraft, and the ground
antenna. For further discussion, see Eshleman (1975), Hubbard et al.
(1975), Hubbard (1976), and Kliore and Woiceshyn (1976).
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Voyage__

Earth

FIG. 2. Idealized representation of the experiment geometry show-

ing the instantaneous ray path followed by radio signals propagating

from Voyager 2 to Earth. The local shape of Neptune is modeled using

a sphere as explained in the text. Radial gradients of atmospheric refrac-

tive index cause the ray path to bend by an angle a, which depends

strongly on the impact parameter a. For reference, a was about 0.038

radians (2.2 °) for the ray path that grazed the 1000-mbar pressure level
at egress.

tion that the refractive index of the atmosphere, /z, de-
pends only on the radial distance, r, from the local center
of curvature. (The validity and implications of this as-
sumption are considered below.) Figure 2 shows a sche-

matic of the occultation geometry and introduces key
parameters. Within the framework of geometrical optics,
the radio signals propagating from spacecraft to Earth
follow a distinct trajectory, or ray path, which corre-

sponds to a stationary value of the path integral of refrac-
tive index (Born and Wolf 1975). The ray trajectory is a
straight line in a vacuum but curves within the atmosphere
of Neptune in response to gradients in/z. The net refrac-

tive bending angle, a, is a strong function of the impact
parameter, a, defined as the distance from Neptune's local
center of curvature to the straight line followed by the
ray approaching (or receding from) the atmosphere. The
assumption that /z depends only on r has two notable
consequences. First, the ray path always remains in the
plane containing the spacecraft, the ground station, and
Neptune's local center of curvature. Second,/z(r) can be
obtained uniquely from a(a) through an Abel transform.
[See Bracewell (1986, p. 262) for a discussion of the Abel
transform and its properties.]

The frequency, f(ti), of a signal received at the ground

antenna depends, among other things, on the Doppler
shift caused by motion of the spacecraft, which in turn

depends strongly on a. We exploited this relationship
to obtain a(ai) from f(O using the reconstruction of the

spacecraft trajectory provided by the Voyager Navigation
Team. This step is straightforward, requiring only basic
laws of geometrical optics and a relativistic formula for the

Doppler shift. We then obtained tz(ri) from a(a_) through
numerical integration.

Other atmospheric parameters can be derived from the

refractive index profile. Analysis of Voyager observations
suggests that H2 and He are the principal constituents of
the stratosphere and upper troposphere with the relative
abundances given in Table I (Conrath et al. 1991b). (Minor
constituents, such as CH4, have a negligible effect on
the net refractive index of the atmosphere at pressures
0.1-1000 mbars, so they are ignored here.) We converted

tz(ri) to a vertical profile of mass density, p(r_), for this
observed composition using laboratory data on the micro-

wave properties of H z and He (e.g., Orcutt and Cole 1967,
Lindal et al. 1987). Next, we assumed that the atmosphere
is in hydrostatic equilibrium in the vertical direction, so
that the pressure at a given radius, p(r_), matches the
weight of the overlying column of gas, which we calcu-
lated from p(ri) using the measurements of the gravity field
and rotation rate mentioned earlier. Finally, we obtained a

temperature profile, T(r;), by using these results for p(ri)
and p(ri) along with the ideal gas law.

This procedure for data reduction also yields parame-
ters that characterize the geometry of the ray path and
its variation with time. These include the latitude and

longitude at the point of closest approach to Neptune,
which we will refer to as the proximate point on the ray
path. The solution for the motion of the proximate point
(latitude and longitude vs pressure) provides a useful char-
acterization of the experiment geometry (see Fig. 13, be-
low). We also used these results to relate the basic mea-

surements, f(0, to the pressure, Pi, and radius, r;, of the
proximate point, which proved useful in analyzing the
data and interpreting the results.

Having described the general procedure for reducing
radio occultation data, we now consider its application
to studies of atmospheric waves. The radio occultation
measurements pertaining to pressures between 0.1 and

1000 mbars were obtained in a short interval (about 100
sec at ingress and 230 sec at egress) as the ray path sliced
rapidly through Neptune's atmosphere. Because these

TABLE I

Composition and Thermodynamic Properties

of the Upper Troposphere and Stratosphere

Parameter Value

Mole fraction of H 2 81%
Mole fraction of He 19%

Gas constant, R 3500 m 2 sec -2 K -1

Specific heat at constant 9100 m 2 sec -2 K -!

pressure, a Cp

a Assuming "frozen equilibrium" hydrogen at 80
K.
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time spans are much shorter than the period of any atmo-
spheric waves expected to be present on Neptune (see
below), the retrieved temperature profiles give a snapshot

of the instantaneous atmospheric structure at ingress and
egress. An investigation of atmospheric waves is possible
with this type of data provided that any wave-induced

temperature perturbations can be distinguished clearly
from the background thermal structure. This can be a
difficult task when the vertical scale of the waves is com-

parable to or larger than a pressure scale height. However,
the signature of atmospheric waves with smaller vertical

wavelengths can be readily identified through use of an
appropriate spatial filter.

We chose for this application a digital filter based on

least-squares fitting of quadratic polynomials (Hamming
1989). The filter was applied to the basic frequency data as

follows. First, we obtained the radius, ri, at the proximate
point for the data sample of interest, f(O, through direct
inversion of the occultation measurements. Next, we
identified all data samples whose corresponding proxi-
mate radii fall within a prescribed altitude interval d cen-

tered on r;. We then fit a quadratic polynomial by least
squares to this segment of frequency data using time as the
independent variable. The value of the fitted polynomial at
ti, the time of the central data sample, represents one

sample of output from a "low-pass" filter. Conversely,
the difference between the central data sample and the
fitted polynomial at time t; represents one sample of output
from a "high-pass" filter. We repeated this procedure for
each discrete sample of frequency.

The operation of the filter can be expressed as

f(ti) = fo(ti) + f'(ti) , (1)

where f0 is the value of the fitted polynomial. The filter

separates the data into two components, one ff0) that
varies slowly with time, and another (f') that comprises
relatively rapid variations about the mean. When used in

conjunction with the procedure for data reduction de-

scribed above, and with the proper choice for the parame-
ter d, this filter is capable of separating the background
thermal structure of the atmosphere from the temperature
perturbations caused by atmospheric waves. The same

type of filter was applied previously by Hinson and Magal-
hftes (1991) in a similar study of atmospheric waves on
Uranus.

The properties of this filter can be described through
use of a dimensionless transfer function, B(X), defined as
the ratio of filter output to input when the latter is a

sinusoid of spatial period h. Figure 3 shows B()t) for both
the low-pass and the high-pass filters when d is 20 km.

The chief limitation of these filters arises from the ripples
that appear when X < 10 km. These cause distortion in

1.5

1.0

0.5

0.0

-0.5

...... !

high-pass filter

low-pass filter

10 100

Spain Period, km

FIG. 3. Characteristics of the spatial filter applied to the radio occul-
tation data. The dimensionless transfer function B gives the ratio of

filter output to input when the latter is a sinusoid with spatial period A.

Curves show B for low-pass and high-pass filters when the parameter

d = 20 km. The transfer functions for these two filters are equal (B =

0.5) when h _ 16 km, corresponding to the spatial resolution of output
from the low-pass filter.

the output from the high-pass filter while allowing signals
with high spatial frequencies to leak (with attenuation)
into the output from the low-pass filter. However, this

did not appear to be a serious problem in the present
application, and we chose this filter over numerous alter-

natives because of its simplicity.

Finally, we note that x-band data have two important
advantages over s-band data for remote sensing of Nep-
tune's neutral atmosphere. First, the SNR is higher at x-
band by a factor approaching 40 for the data considered

here. Second, data at the shorter wavelength are far less

affected by Neptune's ionosphere. Quantitatively, the
Doppler shift in frequency caused by the neutral atmo-
sphere is 11/3 times larger at x-band than at s-band,
whereas the reverse is true for the Doppler shift caused

by the ionosphere. Both factors enhance the sensitivity
of the x-band data to the small frequency perturbations
caused by waves in the neutral atmosphere. Accordingly,
all results presented in the next section were derived en-

tirely from measurements at 3.6-cm wavelength. 2

2 In a previous study of waves in the neutral atmosphere of Uranus,

we used measurements at s-band to remove plasma effects from the x-

band data (Hinson and Magalhfies 1991). We computed the analogous
correction term for the Neptune occultation data but found it to be

negligible, at least for the subset of data considered here. Hence, we

decided to forgo the plasma correction in order to avoid needlessly
contaminating the x-band data with additional thermal noise.
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FIG. 4. Vertical profiles of temperature, To, and buoyancy fre-

quency, N, obtained from frequency measurements at a sampling rate

of 6.10 Hz. Data were smoothed to a vertical resolution of about 16 km

before inversion. The resulting profiles characterize the background

structure of the stratosphere and upper troposphere.

RESULTS

When applied to the radio occultation data from Nep-
tune, the method of analysis described in the previous

section yielded complementary results concerning not

only atmospheric waves in the upper troposphere and

stratosphere but also the ambient structure through which

the waves propagate. The results for the background

structure are presented first, followed by a discussion of
the waves and their basic characteristics.

Background structure. Figure 4 shows vertical pro-
files of temperature, To, retrieved from the smoothed fre-

quency data, f0. We used a low-pass filter with d = 20

km during data reduction, yielding profiles with a vertical

resolution of about 16 km (cf. Fig. 3). The tropopause,

defined as the temperature minimum that separates the

stratosphere from the troposphere, appears at a pressure

near 100 mbars, where T O_ 50 K. The vertical resolution

of the profiles was chosen to match the pressure scale

height, H =- RTo/g , at the tropopause, where R is the gas

constant and g is the acceleration of gravity. Recalling that

the low-pass filter suppresses any temperature oscillations

on scales smaller than 16 km, and noting that wave-like

features with larger vertical scales are not evident in Fig.
4, we take these profiles to be representative of the back-

ground structure of Neptune's atmosphere.
The ingress profile in Fig. 4 is slightly warmer than the

results tabulated by Lindal (1992). The difference is 1.9

K at a pressure of 1 mbar, decreasing steadily to 0.3 K
at 1000 mbars. As the uncertainties in the measurements

at these two pressures are about 12 and 2 K, respectively

(Lindal 1992), the difference is not statistically significant.

This small temperature bias had no appreciable effect on
the results reported here.

Figure 4 also shows profiles of the buoyancy (or
Brunt-Vfiis_ilfi) frequency, N, defined as

N-= _o\-ff_-Z+_pp
(2)

Here, z is geometric height and Cp is the specific heat at
constant pressure. We computed N from the measured

temperature profiles using values for g and Cp appropriate
to Neptune.

The quantity N is both a natural measure of static stabil-

ity and a key parameter affecting the behavior of atmo-

spheric waves (Gill 1982, Andrews et al. 1987). It is largest

in the lower stratosphere (5-10 mbars), where TOincreases
rapidly with height. In the troposphere, N decreases

steadily with increasing pressure as OTo/OZ approaches

the dry adiabat, - g/Cp. A fluid parcel displaced vertically
will tend to oscillate about its equilibrium position with
angular frequency N (Turner 1973).

Table II lists relevant characteristics of the background

structure of the stratosphere. The results for r0, To, H,
and N were obtained as part of this work. Values for

other parameters were either taken directly or derived
from references already cited.

Wave perturbations to received signal frequency. An
atmospheric wave modulates the ambient structure of a

planetary atmosphere, producing a periodic pattern of

spatial (and temporal) variations in/z, p, and T. During

TABLE II

Physical Characteristics of the Stratosphere of Neptune a

Parameter 61 °N 45°S Units

Planet radius, b r0 24,530 24,650 km

Coriolis parameter, f + 1.90 - 1.53 10-4 sec- 1

Planetary vorticity 4.28 6.22 10 -12 m -1 sec -1

gradient,/3

Gravitational 11.2 11.1 m sec-2

acceleration, g

Adiabatic lapse rate, 1.2 1.2 10 -3 K m -_

g/cp

Background 71 63 K

temperature, To

Pressure scale 22 20 km

height, H

Brunt-Vfiisfil_i 1.8 1.9 10 -2 sec -1

frequency, N

Value given at lO-mbar pressure level for vertically varying param-
eters.

b Measured from center of mass of Neptune.
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an occultation experiment, this atmospheric modulation

in turn causes perturbations to the bending angle o_ and,

hence, to f. The characteristics of the frequency fluctua-

tions are determined by the experiment geometry and the
spatial structure of the atmospheric wave.

Data from a single radio occultation experiment are
not sufficient for reconstructing the full three-dimensional

structure of an atmospheric wave. There is an inherent

ambiguity in the data that affects measurements of not

only the vertical and horizontal wavelengths but also the

wave amplitude. The simplest way to avoid this ambiguity
is by assuming that the horizontal wavelength (or charac-

teristic scale) of each wave is much larger than its vertical

wavelength. The observed, quasi-periodic perturbations
infcan then be attributed entirely to wave-induced verti-

cal variations in/x. In addition, the wave amplitude can
be retrieved reliably through use of the Abel transform.

We adopted this assumption in deriving our fundamental

results, which appear in Figs. 5-11. We will discuss its

implications after the basic results have been presented.

Proceeding with the data analysis, we labeled each data

sample with the pressure, Pi, and radius, ri, of the corre-

sponding proximate point on the ray path. These parame-
ters were obtained as a byproduct of the analysis that led

to the profiles in Fig. 4. We then applied a high-pass

filter with d = 20 km to the frequency data yielding the
perturbations, f', that result from atmospheric structure

on vertical scales smaller than about 16 km. The resulting
profiles off' vs p_ or r; are the basis of the results shown
in Figs. 5-7.

We applied techniques of spectral analysis to character-

ize these frequency perturbations. Two different ap-

proaches were used. In one, we first interpolated the data

to obtain samples with uniform spacing in ray altitude for

pressures between i and 1000 mbars. After applying a

Hamming window 3 to the interpolated data, we computed

the discrete spatial Fourier transform and its squared mag-

nitude, the power spectrum (Bracewell 1986). In our sec-

ond approach to spectral analysis, we adopted a least-

squares procedure that can be applied directly to un-

equally spaced data (Lomb 1976, Press and Teukolsky

1988), thus avoiding the need for interpolation. The power
spectra calculated by these two methods are in close

agreement. Figure 5 shows the results at both ingress and
egress.

We used numerical simulations supplemented by stan-
dard results from statistical analysis to characterize the

effects of thermal noise, the main source of error in the

measured spectra. The simulations show that the proba-

3 Window functions (Harris 1978) are commonly used in spectral anal-

ysis to suppress "leakage" effects, which occur when the length of the

data interval used in the Fourier transform is not an integer multiple of

the periodicity of the data (Brigham 1974).
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FIG. 5. Power spectra of frequency fluctuations, f', as a function

of vertical wavelength. Results at both ingress and egress were obtained

from data at pressures 1-1000 mbars. The dominant features in both

spectra reflect structure in the atmosphere of Neptune. Random peaks
caused by thermal noise should seldom exceed 1 Hz 2.

bility of a random peak exceeding 1 Hz 2 is less than 10 -3

(For reference, each measured spectrum contains about

800 discrete samples.) Moreover, as a first approximation,
the spectrum resulting from thermal noise should follow

a X 2 distribution with 2 degrees of freedom (Jenkins and
Watts 1968).

At ingress (Fig. 5a), the measured spectrum exhibits

numerous peaks that are well above the noise level, indi-

cating the presence of atmospheric structure over a range
of vertical scales. The most prominent feature is a narrow

peak with a periodicity of about 3 km. In contrast, the
spectral power at egress (Fig. 5b) is concentrated within

spatial scales of about 7-10 km, and structure on smaller

vertical scales is more subdued than at ingress.

In order to take a closer look at this atmospheric struc-

ture, we separatedf' into two components through addi-
tional filtering:
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FIG. 6. Frequency perturbations, f[, that result from atmospheric

structure with vertical wavelengths of 4-16 kin. Measurements exceed

the noise level at pressures greater than 2-3 mbars.

f' =£ +ft- (3)

The second term, f_, is the result of applying a high-pass
filter with d = 5 km to the original frequency data, while
the first term, f_, is the difference between f' and ft.
Hence, one component, f_, is sensitive to atmospheric
structure with vertical wavelengths of about 4-16 km,
while the other component, f_, results from vertical struc-

ture smaller than about 4 km. This strategy for subdividing
f' was guided by the appearance of the measured spectra.

Figure 6 showsf_ vs Pi at both ingress and egress. The
sensitivity of these measurements was limited to about

0.1 Hz, roughly independent of Pi, by thermal noise.
Structure in the neutral atmosphere produced frequency
perturbations that exceed this noise level for pressures
greater than 2-3 mbars at both locations. The most strik-
ing aspect of the data is the periodic oscillations that
appear at egress at pressures of 3-90 mbars. This feature

is responsible for the predominant spectral peak in Fig. 5b.
The frequency perturbations at ingress, though generally
more irregular in appearance than those at egress, include
wave-like oscillations at pressures 80-1000 mbars. As one
indication of the sensitivity of the measurements, we note

that a 1-Hz variation in f_, which is easily detectable,
corresponds to a change in a of only 3/xrads.

Figure 7 shows analogous measurements off_ vs Pi.
As in Fig. 6, the noise level at low pressures is about 0.1
Hz, but the impulsive fluctuations caused by thermal noise
increase (with decreasing SNR) to about 0.4 Hz at 50

mbars. (This component of thermal noise was largely re-
moved from the data in Fig. 6 by the low-pass filter with
d = 5 km.) Observations off_ at pressures exceeding 50
mbars are strongly affected by thermal noise and will not

be considered here. The effect of small-scale structure in

the neutral atmosphere is evident at both ingress and
egress for pressures greater than 2-3 mbars. Measure-

ments at ingress exhibit strong, quasi-periodic oscillations
at pressures of 4-40 mbars. In contrast, signal fluctuations
at egress are more subdued and less structured. These

characteristics of the data in Fig. 7 are consistent with

the appearance of the spectra in Fig. 5 at small spatial
scales.

Wave perturbations to temperature and density. The
frequency perturbations in Figs. 5-7 are caused by struc-
ture on scales smaller than the resolution of the atmo-
spheric profiles in Fig. 4. In order to characterize this

structure more completely, we retrieved additional pro-
files from the data at both ingress and egress. For one,
we used a low-pass filter with d = 5 km during data
analysis, yielding a profile with a vertical resolution of

about 4 km. In other words, this profile was retrieved
from the frequency data f0 + f_. We derived another
profile from unfiltered data (i.e.,f0 + f_ + f_); in this case
the vertical resolution was diffraction-limited to about
1 km. These two additional profiles exhibit small-scale

temperature perturbations superimposed on the back-
ground structure of Fig. 4. We then computed the differ-
ence between pairs of atmospheric profiles with different
vertical resolutions to isolate temperature perturbations,
T', in wavelength passbands of 0-4 and 4-16 km. The
results are shown in Figs. 8-11.

Our method for interpreting these data involves use of

the standard, linear theory for time-harmonic atmospheric
waves (see below). We therefore restricted our attention

to the most prominent, quasi-sinusoidal features that ap-
pear in Figs. 6-7, which correspond to the dominant peri-
odicities of the data (Fig. 5). Specifically, we selected for

0.l
' i ' , ' i . i . i . t . i . i . i .

A -- Ingress
.i .i .i.i. i ' J .i.i ,i ,

B -- Egress

FIG. 7. Frequency perturbations, f_, that result from atmospheric

structure with vertical wavelengths smaller than 4 kin. Measurements

exceed the noise level at pressures greater than 2-3 mbars.
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FIG. 8. Atmospheric structure on spatial scales of 4-16 km in the
stratosphere at egress. There is a direct correspondence between the
variations infl that appear in Fig. 6b at pressures 3-90 mbars and these
profiles of T' and p'. We will refer to this pattern of oscillations as wave
1. The pressure interval displayed here and in Figs. 9-10 corresponds
to an altitude interval of about 90 km.

Figure 8 also shows the vertical profile of density pertur-
bations, p'. This is the more fundamental measurement

in a radio occultation experiment since p _/x - 1 (for a
homogeneous mixture of H 2 and He) while T is obtained

through vertical integration of p [cf. Eq. (10) of Fjeldbo
and Eshleman 1968]. However, atmospheric waves are

usually characterized in terms of temperature rather than

density perturbations. In addition, the relationship be-
tween T' and p' is straightforward for the method of data
analysis used here:

Z r pl

- ToPo" (4)

Here, P0 and To refer to the background structure of the

atmosphere (Fig. 4), and we have assumed that T'/To
1, which is easily satisfied. For these reasons, profiles of

p' are not shown in subsequent figures.
Figure 9 shows the perturbations T' observed in the

troposphere at ingress over the same range of spatial

scales. The observations extend to a pressure near 1000

further analysis the oscillations in f[ at pressures 3-90

mbars in Fig. 6b and at pressures 80-1000 mbars in Fig.

6a, as well as the oscillations in f; at pressures 4-40 mbars

in Fig. 7a. Of necessity, we avoided the irregular or seem-

ingly random variations inf' that are also present in Figs.

6-7, for which this simple theory seems inappropriate
(e.g., the fluctuations in f_ at pressures 2-70 mbars in

Fig. 6a or inf_ at pressures 5-50 mbars in Fig. 7b). These
features might represent superpositions of waves with

different vertical wavelengths, or possibly turbulent lay-
ers generated by shear instability, but in either case their

interpretation is problematical and will not be considered

here. Although the criteria used in selecting data for fur-

ther analysis is admittedly subjective, we feel that it repre-

sents a reasonable first attempt at interpreting the princi-
pal features of the observations.

Consider first the atmospheric structure on spatial
scales of 4-16 km. Figure 8 shows the perturbations T'

that correspond to the sinusoidal variations infl observed
at pressures 3-90 mbars at egress (cf. Fig. 6b). The oscilla-

tions have an average vertical wavelength of 8 km. For

comparison, the sample spacing of the measurements de-

creases steadily from about 800 m at 3 mbars to about 40

m at 90 mbars. The amplitude of the oscillations generally
increases with height, from 0.2 K at 80 mbars to 1 K at

6 mbars. This is qualitatively consistent with the behavior

expected for a freely propagating atmospheric wave. We

note once again the sensitivity of the measurements: a

wave with an amplitude of only 0.2 K can produce an

easily detectable perturbation to received signal fre-
quency.

100

_S

1000

-0.3

' ' ' | I ' ' ' ' I ' ' ' ' I . . , . | . . . , I ' ' '

Ingress -- wave 2

,,,, I,,, , I,,,, I,,,, |,,,. I,,, i
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FIG. 9. Atmospheric structure on spatial scales of 4-16 km in the
troposphere at ingress (wave 2), corresponding to the variations in f_
that appear in Fig. 6a at pressures 80-1000 mbars. This profile of T'
was obtained from frequency measurements with a sampling rate of
6.10 Hz.
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FIG. 10. Atmospheric structure on spatial scales smaller than 4 km

in the stratosphere at ingress (wave 3), corresponding to the variations

in fj that appear in Fig. 7a.
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FIG. 11. Temperature perturbations from Figs. 8-10 superimposed

on the same axes. Arbitrary temperature offsets have been introduced

to avoid overlap.

had a negligible effect on the measurements. We now

assess the impact of this assumption on the reliability of

these results and, at the same time, derive a constraint
on the horizontal structure of the waves.

We will consider the effect on radio occultation mea-

surements of a generic atmospheric wave whose structure

in local, Cartesian coordinates is given by

mbars, within about 15 km of the CH 4 condensation level

(Lindal 1992). The corresponding variations in f[ were

noted previously in Fig. 6a. These oscillations in tempera-

ture have an average vertical wavelength of 9 km. The
sample spacing of the measurements decreases from

about 200 m at 80 mbars to about 90 m at 900 mbars.

Figure 10 shows analogous results at ingress for atmo-
spheric structure on spatial scales smaller than 4 km. The

oscillations in T' have an average vertical wavelength of

3 km, corresponding to the highest spectral peak in Fig.

5a and the prominent oscillations in f; in Fig. 7a. The

amplitude in temperature is about 0.2 K throughout this

pressure interval. The sample spacing of the measure-
ments decreases from about 700 m at 4 mbars to about
300 m at 30 mbars.

In summary, Fig. 11 shows the temperature perturba-
tions from Figs. 8-10 superimposed on the same axes.

Table III lists basic characteristics of the three putative
waves.

Constraints on horizontal structure. In deriving the
results shown in Figs. 5-11, we assumed that any wave-

induced horizontal variations in atmospheric structure

p'Cx, y, z, t) = Ae-Z/214exp[i(kx + ly + mz - cot)]. (5)

Here, A is a constant, c0 is the wave frequency, and the

wave vector k has components k, l, and m in the zonal,

TABLE III

Measured Wave Properties

Parameter Wave 1 Wave 2 Wave 3

Location:

Latitude 45°S 61 °N 61 °N

Longitude 130°E 221 °E 223°E

Pressure" (mbars) 3-90 80-1000 4-40

Average vertical 8 9 3

wavelength _

(27r/m) (km)

Amplitude in 0.2-1 -0.1 -0.2

temperature" (K)

Figure showing 8 9 10

vertical structure

Aspect ratio, m/krl > 17 >20 > 17

a Estimate based on neglect of horizontal structure of

wave.
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meridional, and vertical directions, respectively. This ex-

pression can be generalized to spherical coordinates by
setting

x--+ ro cos 6 (A - Ao)

y _ ro(6 - _bo)

z---> r - ro.

(6)

Here, r is radius, A is east longitude, and th is planeto-
graphic latitude; r0, A0, and 4)0 are reference values. At

an arbitrary location, the generalized wave vector k has

local horizontal and vertical components kh =-- (k, l, 0)
and kv =- (0, 0, m), respectively.

We can relate the spatial structure of the wave to the

experiment geometry by defining a unit vector s that is

tangent to the ray path at the proximate point. The angle
between s and the local zonal (eastward) direction on

Neptune was 53 ° at ingress and 32 ° at egress. In the discus-

sion that follows, we refer to the components ofk h that are

parallel and perpendicular to s as kit and kx, respectively.
In the limit where kh _ 0, /9' is independent of A

and oh. Reliable measurements of the vertical wavelength

(27r/m) and the vertically varying wave amplitude
(Ae -z/2H) can then be retrieved through use of the Abel

transform, which is based on the assumption of local

spherical symmetry. This situation is depicted in Fig. 12a.

However, when kn # 0, this assumption is no longer valid
and two types of errors can appear in results derived with
the Abel transform.

The first type of error is attributable to kll and affects

estimates of wave amplitude and location. When kfl # 0,
the radio signals propagating from spacecraft to Earth

encounter sinusoidal variations in wave structure beyond
what would be expected for a spherically symmetrical

atmosphere, as shown in Fig. 12b. There is nearly com-

plete cancellation between the perturbations caused by
successive wave crests and troughs in some regions, but

strong coupling between the wave and the radio signal

can still occur at preferred locations. Model calculations,
described below, show that the Abel transform can accu-

rately recover the spatial pattern of density perturbations,
p', for both cases illustrated in Fig. 12. However, when
kll # 0, as in Fig. 12b, the Abel transform attributes the

signal perturbations to structure like that shown in Fig.
12a, yielding a profile oftg' that is shifted lower in altitude

relative to its true location. This in turn causes incorrect

values for P0 and To to be used in evaluating the right-
hand side of Eq. (4), leading to errors in the estimate of T'.

The error caused by P0 will generally dominate because of

the exponential variation of tg0 with height. As the profile

of/9' can be shifted only downward, the value of tg0 used

in Eq. (4) will always be too large. By neglecting to ac-
count for this effect, the Abel transform will underesti-

space- _
craft -

2 - 3

• ray _" - __--_,'_

Ne _tune

center of mass

Earth

1 2 3

FIG. 12. Schematic showing orientation of ray path relative to stria-

tions of atmospheric density. For simplicity, the ray path is depicted

as a straight line. In (A), the density striations are aligned with the local

horizon. The net effect on the radio signal from regions I and 3 is

negligible, since there is nearly complete cancellation between perturba-

tions caused by successive crests and troughs of the density variations.

In contrast, the striations in region 2 produce a strong cumulative effect

on the radio signal. Vertical motion of the ray path through this type

of "onion-layer" atmospheric structure produces oscillations in signal
frequency that can be interpreted correctly with the Abel transform. In

(B), each "packet" of striations has been rotated clockwise by about

30 ° relative to (A). Viewed locally, the striations have a horizontal-to-

vertical aspect ratio of V'3. Cancellation now occurs in regions 2 and

3, but the net effect of the striations on the radio signal can still be

appreciable because of the interaction in region 1. However, attempts

to interpret the signal perturbations with the Abel transform will produce
errors (see text).

mate T' unless kit is sufficiently small. The results in Figs.
8-11 and Table III therefore represent lower bounds on
Z r"

We characterized the behavior of this error source

through use of numerical simulations. We began by con-
structing a model atmosphere consisting of isothermal

background structure modulated by an atmospheric wave
of the form given by Eqs. (5) and (6). We then calculated
the effect of the wave on radio occultation measurements

by applying standard formulas of geometrical optics (Born

and Wolf 1975). We repeated these steps using a range
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of values for wave parameters. We found that the errors

are relatively small when 27r/klf exceeds 27r/m by a factor
of 50. In that case, the spatial pattern of density perturba-
tions obtained with the Abel transform is shifted down-

ward by about 5 km and the estimate for T' is about 20%

less than its true value. However, when the aspect ratio

rn/kll is reduced to 20, the vertical shift increases to about

30 km and the estimate for T' is too small by a factor of
about 3. Both the shift in altitude and the error in T'

increase rapidly with further decreases in m/klj. These
results are nearly independent of the value of 27r/m, at
least over the range of values considered here.

We are now in a position to obtain a constraint on kll
by deriving an upper bound on the wave amplitude. To
avoid a convective instability,

dT' N2H (7)
dz <---R--

When m _> 1/2H, which applies here, this condition be-
comes

N2H

IT'I < m---R" (8)

This upper bound on ]T'] allows us to place an upper limit

on the amount by which the true wave amplitude can
exceed the estimate obtained from the Abel transform.

We applied Eq. (8) to the waves shown in Figs. 8-10

using measured values for N, H, and m. For example,
the true amplitude of wave 3 (Fig. 10) cannot exceed 0.9

K at the 10-mbar pressure level; this upper bound exceeds
the nominal measured value by a factor of about 4. When
combined with the results from the numerical simulations

described above, this condition leads to the conclusion

that m/kll > 17 for this wave. Table III gives_the constraint

on m/kll obtained in this manner for each wave.
The Abel transform is susceptible to a second type of

error, which arises from k. and affects measurements of

the vertical wavelength (27r/m). It can occur when the
experiment geometry involves horizontal motion of the

ray path (i.e., when the latitude and/or longitude of the

proximate point varies with pressure). This was the case

in the occultation of Voyager 2 by Neptune, as shown in

Fig. 13. The ray path sliced obliquely through the atmo-
sphere, sampling both vertical and horizontal variations

in wave structure. The angular frequency of the resulting
oscillations in f' is given by

K = Vvm + Vhk ±. (9)

Here, Vv and Vh are the vertical and horizontal compo-

nents, respectively, of ray path velocity relative to the

atmosphere. (The steps of data analysis that led to Fig.

13 also yielded estimates for Vv and Vh .) Obviously, mea-

surements of K are not sufficient to yield unique solutions

for both m and k±. Our estimates for 2_/m in Table III,

which are based on the assumption that ki = 0, are there-
fore subject to a possible bias.

The size of the error from this source is determined by

the experiment geometry (Fig. 13) and the spatial struc-
ture of the wave. Consider first the measurements at in-

gress. At pressures less than 30 mbars in the stratosphere,

the ray path moved at nearly the same rate in the hori-

zontal and vertical directions. From Eq. (9), the fractional

error in 2_/rn will therefore have a magnitude of about

k±/m. At pressures exceeding 300 mbars in the tropo-
sphere, the proximate point moved about 20 times more

rapidly in the horizontal direction than the vertical direc-

tion, leading to a fractional error in 27r/rn of about 20 x

k±/m. The corresponding fractional errors for measure-

ments at egress are about kl/m and 50 x k±/rn. These

simple geometrical considerations lead to the following

conclusions. For the waves in the stratosphere (Figs. 8

and 10), this error source will have a relatively small

impact on the estimates of 27r/m provided that k I _ m.

For example, if ki _- kll, which seems plausible, the error
in 2_/m would be less than 6% (cf. Table liD. In contrast,

the estimate of 2_r/m for the wave in the troposphere (Fig.
9) is subject to much greater uncertainty. For this reason,

we will restrict subsequent discussion to the waves ob-

served in the stratosphere.

DISCUSSION

In this section we consider the question of wave identity

and derive constraints on wave frequency and horizontal

phase speed. We infer other general properties of the

waves by modeling their measured vertical structure. We

then discuss the possible impact of the waves on the eddy
mixing, circulation, and thermal structure of the middle

atmosphere.

We focus our attention on waves 1 and 3, whose vertical

wavelengths can be estimated reliably. To simplify the

interpretation, we will assume that: (1) each feature can

be modeled accurately as a single, time-harmonic wave
mode; (2) the wave source is in the convective lower

troposphere, so that the vertical component of the group

velocity is upward throughout the pressure range of the

measurements; and (3) the wave motion is hydrostatic

(i.e., rn _> k, l; Gill 1982), as implied by the constraints

on m/kll in Table III. The first assumption is the most

questionable of the three. Recall that the profiles of T' in

Figs. 8 and 10 represent measurements within wavelength

passbands of about 4-16 and 0-4 km, respectively. Each

measured profile could therefore contain a superposition
of waves with different amplitudes and vertical wave-
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FIG. 13. Latitude and longitude vs pressure for the proximate point on the ray path. This characterization of the experiment geometry was
obtained as a natural byproduct of the analysis that led to the results in Fig. 4. The bend that appears near the 100-mbar pressure level in three
of the curves is a consequence of the spacecraft trajectory and the exponential increase in c_with decreasing a. See Connerney et al. (1991) for
a definition of the longitude system.

lengths. Judging by the appearance of the spectrum in

Fig. 5a, this is a serious possibility for wave 3. However,

the situation is ambiguous for wave 1, where the spectral
broadening of the main peak in Fig. 5b could be due either

to a superposition of modes with nearly the same vertical

wavelength, or to the variation of m with height that is

expected for a single, monochromatic wave (see below).

We adopted assumption 1, above, in the interest of finding
the simplest possible interpretation for the data. This

comes at the expense of introducing some uncertainty
into our results and conclusions.

Wave identity, frequency, and horizontal phase

speed. Among the classes of waves that could be present
at mid-latitudes on Neptune, Rossby waves and inertio-

gravity waves are the best candidates for explaining the

observations. 4 Our first challenge is to resolve this uncer-
tainty in the wave identity.

To model the behavior of Rossby waves, we used quasi-

geostrophic theory (which excludes inertio-gravity
waves), a beta-plane geometry, and a coordinate system

rotating at angular rate 12 = 1.083 x 10 .4 sec -1, the

rotation rate of Neptune's internal magnetic field (War-

wick et al. 1989). We considered only the case where
m >> 1/2H, which is appropriate here. We also linearized

the basic fluid equations; the validity of this approxima-

4 In principle, acoustic waves are another possibility, but their periods
are shorter than those of inertio-gravity and Rossby waves, and little
natural excitation is expected at these frequencies. See French and
Gierasch (1974) for additional arguments opposing an acoustic-wave
interpretation.
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tion is considered below. Within this theoretical frame-

work, Rossby waves propagating on a basic zonal flow
obey the following dispersion relation (Andrews et al.
1987):

Ori _ (.0 -- k-ff = -flk
k2 + 12 + mZf2/N 2 . (10)

Here, o-i is the intrinsic frequency, K is the mean zonal

wind speed, the Coriolis parameter f-= 2f_ sin _b,and/3 -=
df/dy. Table II gives values forfand/3 at the latitudes of

interest. Although Eq. (10) is strictly valid only when
and N are constants, it remains accurate when these two

parameters vary slowly with position.
In the present application, the only unknowns in this

expression for o-i are k and l, the horizontal components
of the wave vector. Hence, two conditions must be satis-
fied if the observed waves are Rossby wavesS:

[o_i[ < N/3
- 2lm/I (11)

< N2/3
[c[ - mZf2. (12)

Here, c =--os/k , the zonal phase speed measured relative
to K (with eastward positive). Substituting measured val-
ues for N, f,/3, and m appropriate to wave 1:

[o'i1 -----5 × 10 -7 sec -1 < 12/200

Ic] -< 0.15 m sec -1.

(13)

(14)

Tighter constraints apply for wave 3. Hence, Rossby
waves with the vertical structure shown in Figs. 8 and 10
would have small zonal phase speeds (relative to K) and
long periods.

Consider the behavior of Rossby waves when K varies
with height but not latitude. By Eq. (10), a Rossby wave
propagating through vertical wind shear experiences a
Doppler shift in its intrinsic frequency, which produces
commensurate changes in the vertical wavenumber m.
(Note that oJ, k, and l are independent of height in this
simple case.) When the vertically integrated wind shear
is comparable to or greater than ]c[, the wave would be
expected to exhibit substantial vertical variations in m.

However, effects of this type are not apparent in the data,
even though the vertical wind shear on Neptune inferred
from Voyager 2 IRIS observations is typically of order
10 m sec- 1per scale height near the tropopause (Conrath

5 These conditions follow from the functional dependence of o-i on k

and l. for example, [o-il achieves its largest value, given in Eq. (11),

when I_ 0 and k 2 = (mf/N) 2 (cf. Fig. 2 of French and Gierasch 1974).
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FIG. 14. Predictions of theory for inertio-gravity waves applied to

the observations. We used measured values for N,f, and m in Eq. (15)

to compute the intrinsic frequency, o-i, and the horizontal phase speed,

_ri/kn, as functions of the horizontal wavelength, 27r/k h. Results are
shown for waves 1 (dashed line) and 3 (solid line) of Table III.

et al. 1991a). Specifically, the value of m for waves 1 and

3 varies by less than 50% over a height interval where
the vertically integrated wind shear exceeds the upper
bound on ]c[ by a factor of 50 or more. For this reason,

it is difficult to reconcile the observations with a Rossby-
wave interpretation.

We modeled the behavior ofinertio-gravity waves using
linear equations of motion and an f-plane geometry (which
excludes Rossby waves). These assumptions lead to the
following dispersion equation (Andrews et al. 1987):

0-i=09_ k-if= (f2 + N2(k2 +12)) 1/2m2 " . (15)

We used this expression along with measured values for
N,f, and m to compute o-i and the horizontal phase speed,
o-Jkh, as functions of the horizontal wavelength, 2_r/kh,
where kh _ (k2 + 12)_/2. Figure 14 shows the results. We
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TABLE IV

Inferred Wave Properties

HINSON AND

Parameter Wave 1 Wave 3 Units

Wave identity Inertio-gravity Inertio-gravity

Intrinsic 1.5-I1 1.9-11 10 .4 sec -1

frequency, [o-i[

Zonal phase >23 >8 m sec- 1

speed, [c]

Breaking level, Pb 0.5 3 mbars

Strong 1 15 /zbars
attenuation

level, Pa

Eddy diffusivity, <50 <2 m 2 sec-I

Ke (Pa < P <

Pb)

Wave forcing of <9 <3 m sec -I per
the mean flow, planet
IO-U/OII (Pa < rotation
P < Pb)

considered values for 27r/k h ranging from 17 times the

observed vertical wavelength (cf. Table III) to 105 km,
roughly the circumference of a latitude circle at mid-lati-
tudes.

By Eq. (15), Io-i[ > If[ for inertio-gravity waves. In

addition, Fig. 14b shows that [o-Jkh] exceeds 23 and 8 m

sec-1 for waves 1 and 3, respectively. The same condi-

tions apply to the zonal phase speed, since Ic I >_ Io-]khl.
These constraints on o-; and c contrast with the corre-

sponding results for Rossby waves. With their much larger
zonal phase speeds, inertio-gravity waves are far less sus-

ceptible than Rossby waves to the effects of wind shear.

In this regard, the behavior of inertio-gravity waves is
compatible with the observations.

We conclude that the waves in Figs. 8 and 10 are most

likely inertio-gravity waves. In summary, Fig. 14 gives

the plausible range of values for the wave frequency and

horizontal phase speed. The constraints on o5. and c are
listed in Table IV.

Wave vertical structure. Within the theoretical frame-

work described above, and in the absence of dissipation,
the vertical structure of a linear, inertio-gravity wave is
given approximately by

T'ocT0_-0) exp i mdz . (16)

Here, N, To, and O0 refer to the background structure, and

the effect of wind shear has been ignored. This expression
corresponds to a WKB solution to the vertical structure

equation. [See Lindzen (1981) or Hinson and Magalhfies
(1991) for analogous results that apply to pure internal

MAGALHAES

gravity waves and equatorial waves, respectively.] From
Eq. (16), the amplitude of the temperature oscillations is

expected to increase with height basically as po 1/2, but
with additional modulation resulting from the vertical

variations in N and To. The theory also predicts that m
varies with height in such a way that

N/m = constant. (17)

The value of the constant corresponds to the horizontal

phase speed of an equivalent pure internal gravity wave
[cf. Eq. (15) in the limit f---_ 0].

This theoretical expression for T' has three free param-

eters: the ratio N/m, and the amplitude and phase of
the temperature oscillations at a reference pressure level.

Figure 15 shows our attempt to match the theory to the
observed vertical structure of waves 1 and 3. Both the

phase and amplitude of the temperature oscillations in

Fig. 15a show good qualitative agreement with the obser-

vations in Fig. 8. Thus, wave 1 can be interpreted plausi-
bly as a linear, time-harmonic wave mode. In contrast,

the theoretical profile in Fig. 15b differs markedly from

the observations in Fig. 10. Wave 3 appears to be satu-

rated (i.e., the amplitude of the observed temperature

oscillations does not increase appreciably with height),

possibly due to the onset of dissipation (see below).

A closer comparison of the profiles in Figs. 8 and 15a

reveals subtle differences in the predicted and observed

variations of m with height. There are several possible
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FIG. 15. Theoretical profiles of wave-induced temperature perturba-

tions computed from Eqs. (16)-(17). The two profiles represent an at-

tempt to match predictions of theory to the observed vertical structure

of waves 1 and 3 (cf. Figs. 8 and 10). The ratio N/m was assigned values

of 23 and 8 m sec-_ for (A) and (B), respectively. In each case, this

choice of N/m yields the same number of temperature oscillations as

was observed in the pressure range of interest. In all calculations we

used measured profiles of N, To, and O0 that were derived from the radio
occultation data.
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explanations for this discrepancy. For example, it could
reflect the influence of vertical wind shear, as described
earlier in the discussion of wave identity, which was ig-
nored in Eq. (16). In principle, estimates for the wind
shear could be obtained by fitting more sophisticated mod-
els for the vertical structure to the data. Alternatively,
the discrepancy could result from the altitude bias in the
measured wave profile that occurs when the wave hori-
zontal-to-vertical aspect ratio is relatively small. In this

case, the ambient values for N, To, and P0 used in the
model calculations would be inappropriate to the observa-
tions. Finally, the differences between the measured and
predicted variations in m could be due to modulation
caused by the presence of several wave modes with differ-

ent amplitudes and vertical wavelengths. However, a
more detailed analysis of the observed vertical structure

is beyond the scope of this paper.

Wave dissipation. The exponential growth of wave

amplitude with height predicted by Eq. (16) cannot persist
above the so-called breaking level, where the combination
of wave and mean temperature fields yields an adiabatic
lapse rate [cf. Eq. (8)]. At altitudes above this level, the
wave triggers overturning, convection, and small-scale

turbulence which prevent further growth in wave ampli-
tude. In this way, atmospheric waves can produce me-

chanical mixing in otherwise stably stratified regions of
the atmosphere, with important implications for the trans-
port of minor constituents.

For wave 1, the measured temperature lapse rate ap-
pears to be subadiabatic, despite the wave perturbations,
throughout the pressure range of the observations. Esti-

mates of the pressure at the breaking level, Pb, therefore
require extrapolation. Toward this end, we used Eq. (16)
with constraints from the measurements to model the

vertical structure of the wave (cf. Fig. 15a). This model
combined with Eq. (8) predicts that Pb _ 0.5 mbars for
wave 1.

The behavior of wave 3 is basically different and possi-
bly more revealing. The absence of the expected increase
in wave amplitude with height suggests that dissipation
is already occurring within the interval of direct observa-
tions. This interpretation implies that the horizontal-to-
vertical aspect ratio for wave 3 must have a value of

roughly 17, the lower bound given in Table III, so that
the inferred amplitude of the wave would be sufficient to

produce a convective instability. Taking into account the
bias in height (-40 km) that would occur for this value

of the aspect ratio, we estimate that Pb _ 3 mbars for
wave 3.

Our next task is to model the process of dissipation,
which occurs at pressures less than Pb. In a widely used
approach to this problem, wave breaking is assumed to
generate spatially uniform, small-scale eddy mixing that
acts to attenuate the wave in a manner akin to molecular
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FIG. 16. Predictions of linear theory for inertio-gravity waves ap-

plied to the observations. We used measured values for N, H, f, and

m in Eqs. (18) and (15) to compute the eddy diffusion coefficient, Ke,

as a function of the horizontal wavelength, 27r/kh. These results corre-

spond to the so-called Lindzen parameterization.

viscosity. To avoid superadiabatic lapse rates, dissipation

presumably drives the eddy diffusion coefficient, Ke, to
a value sufficient to offset the tendency for exponential
growth of wave amplitude with height (cf. Hodges !969,
Hines 1970). The eddy diffusivity produced in this way
by a linear inertio-gravity wave is given by (cf. French
and Gierasch 1974, Lindzen 1981):

Ke - 2Ho.im 3 . (18)

This approach to estimating K_, sometimes called the

Lindzen parameterization, has gained wide acceptance
because of its simplicity (e.g., Fritts 1984). We used Eqs.
(18) and (15) with measured values for N, H,f, and m to
compute K_ as a function of 2¢r/kh for waves 1 and 3. The

results appear in Fig. 16. Within the constraints on m/kll
in Table III, K_ could be as large as 50 and 2 m 2 sec-1
for waves 1 and 3, respectively.

Near the breaking level, the molecular viscosity of the
H2-He mixture, Km, is relatively small compared to the
computed values for K_, and its effect on the wave can

be ignored. However, this is not the case at lower pres-
sures since Kmincreases exponentially with height, reach-
ing a value of about 3 m2 sec -_ at a pressure of 10/xbars.

A wave propagating upward will experience exponentially
increasing attenuation due to molecular viscosity. At the
level where K_ _ Ke, which we denote by its pressure
Pa, this damping is sufficient to suppress wave breaking.
For example, if m/kh = 20, Pa is about 1 and 15/xbars
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for waves 1 and 3, respectively. Hence, within this simple
theoretical framework, Ke is expected to be roughly con-
stant at pressures between Pb and Pa but negligible outside
this region.

Despite its widespread use, the Lindzen parameteriza-

tion has serious flaws. For example, linearized equations
are being used to model a process that is inherently nonlin-
ear (Andrews et al. 1987, pp. 193-194). In addition, the
exponential growth of wave amplitude results in unstable
stratification only within localized regions, so that use of

a spatially uniform eddy diffusion coefficient is inappro-
priate (Coy and Fritts 1988). These and other problems
have been discussed by Walterscheid and Schubert

(1990), who used numerical simulations to study the non-
linear evolution of an upward propagating internal gravity
wave. They identified the mechanism responsible for lim-
iting the growth of the wave as the overturning of surfaces
of constant potential temperature. Breakdown occurs in

the form of cellular convection driven by the resulting
unstable potential temperature gradients. As this process

cannot be modeled adequately through use of an eddy
diffusion formalism (Fritts and Dunkerton 1985, Coy and
Fritts 1988), Walterscheid and Schubert concluded that

the Lindzen parameterization has no rigorous justifica-
tion. For these reasons, our estimates of Ke are rough

approximations at best. We decided to apply Eq. (18)
despite its limitations because of the importance of this
parameter in photochemical models.

Finally, it is instructive to compare our results with
two independent estimates for K_. First, B6zard et al.
(1991) studied Voyager 2 observations of infrared emis-

sion from Neptune in the acetylene and ethane bands;
these measurements pertain to pressures between about
0.03 and 3 mbars. Their photochemical models show best

agreement with the disk-averaged data when Ke _ 10 m 2

sec- 1at the 1-mbar pressure level. Second, Bishop et al.
(1992) analyzed solar occultation data at wavelengths of
125-138 nm obtained with the Voyager 2 UVS instrument.
In the occultation geometry, absorption by methane atten-
uates solar radiation at these wavelengths to 50% of its
free-space intensity at a pressure near 0.2/zbars. Predic-
tions from photochemical models show best agreement
with the UVS "lightcurves" when K_ _ 103 m z sec-1 at
this pressure level. These results are close enough to
values given here to suggest that wave breaking is a sig-
nificant source of eddy mixing in the middle atmosphere
of Neptune. Hinson and Magalhfies (1991) reached the

same conclusion in a previous study of atmospheric waves
on Uranus.

Effect of the waves on the background circulation and
thermal structure. The effect of an atmospheric wave
on the mean zonal circulation can be expressed as [cf.
Eqs. (3.5.1)-(3.5.3) of Andrews et al. 1987]

O-d e_ OF_)
Ot O2 ' (19)

where

v'O'
=- o-Ug u' , . (20)/

Here, _ is a log-pressure vertical coordinate (dimen-
sionless); F _) is the vertical component of the Elias-
sen-Palm flux (EP flux); u, v, and _ _- d2/dt are the

eastward, northward, and upward components, respec-
tively, of fluid motion; and 0 is potential temperature. An
overbar denotes a zonal average, while primed quantities
represent wave perturbations. The first term in the expres-
sion for F _) represents the effect of the Eulerian-mean
circulation induced by the wave, while the second corre-

sponds to eddy forcing. We have simplified Eqs. (19)-(20)
by neglecting wind shear, mechanical dissipation (e.g.,
due to eddy viscosity), advection, and the y-component
of the EP flux. The available data are not sufficient for

evaluation of such effects. Nevertheless, Eqs. (19)-(20)
should be sufficient for obtaining a simple first approxima-
tion to O_lOt [cf. Eq. (8.3.3) of Andrews et al. 1987].

We now apply these results within the framework of

the linear theory for inertio-gravity waves. Equations
(19)-(20) show that the mean zonal wind is unaffected by
a steady, conservative wave (Andrews et al. 1987), so
that O-d/Ot = 0 for p > Pb. However, in the presence of
dissipation, Eq. (19) becomes [cf. Eq. (24) of Lindzen
1981]:

0..__U_ _ N2_.__kk= N 2 k cr! (21)
Ot 2Hm 3 2Hm 2o-i m

The right-hand side is to be evaluated at the breaking
level. In deriving Eq. (21), we assumed that the wave

amplitude remains constant above the breaking level. As
o-i/m < 0 for a wave whose group velocity is upward,
O-_/Othas the same sign as o-i/k , the zonal phase speed
measured relative to _. Moreover, the only unknown in
this expression for O-d/Ot is k, the zonal wavenumber,
which illustrates the importance of obtaining some mea-
sure of or constraint on the horizontal wave structure. At

greater altitudes (p < p_), the wave is heavily attenuated
by molecular viscosity, wave amplitude decreases rapidly
with height, and wave forcing of the mean flow again
becomes negligible. In summary, we expect O-d/Otto be
roughly constant, with the value given by Eq. (21), at
pressures between Pb and pa.

Using parameter values appropriate to waves 1 and 3,
Eq. (21) yields
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O_ _[150(k/m)msec-lppr (wavel) (22)
150(k/m) m sec -1 ppr (wave 3),

where ppr means per planet rotation. Table IV lists the

corresponding upper bounds on [O-d/OtI based on our ear-
lier inferrence that m/k > 17. Although the sign of the
acceleration is unknown, its magnitude could easily be
sufficient to have a significant effect on Neptune's atmo-
spheric circulation.

As with the zonal circulation, the background thermal
structure is unaffected by a steady, linear, conservative
wave (i.e., O-T/Ot = 0). However, the divergence of the

EP flux that accompanies dissipation drives a "residual
mean meridional circulation" whose vertical component
leads directly to adiabatic heating or cooling [cf. Eqs.
(3.5.1)-(3.5.2) or (7.2.1) of Andrews et al. 1987, Leovy
et al. 1991]. The effect on the thermal structure can be
substantial; under many circumstances it exceeds the con-

tribution by the eddy heat fluxes, v'O' and #'0' (cf. pp.
129 and 299 of Andrews et al. 1987). This implies that
wave-driven heating rates, OT/Ot, cannot be estimated

reliably from calculations of eddy energy fluxes--results
obtained in this manner (e.g., French and Gierasch 1974,
French et al. 1983) should be viewed with caution. Unfor-
tunately, we were unable to characterize the residual

mean meridional circulation or to estimate OT/Ot given
the limitations of the data.

Approximations revisited. Most of the preceding dis-
cussion is based on the assumption that wave amplitudes
are small enough to justify the neglect of nonlinear effects.
We also ignored the possible influence of meridional varia-

tions in _. We now consider the validity of these approxi-
mations in light of the results derived so far.

We begin with the small-amplitude approximation. For
an inertio-gravity wave propagating in the zonal direction,
the condition for stability in Eq. (8) is equivalent to

lu'l< Io,/ - al. (23)

may be indicative of wave breaking and nonlinear behav-
ior. Results given here for wave 3 should be regarded
with extra caution for this reason.

The neglect of meridional wind shear seems justified
when:

and

Io-_/oyl_ Ifl (24)

I(o-_/oy)Syl _ ]cl, (25)

where 8y is the meridional range of the measurements.
The first condition follows from the zonal momentum
equation, while the second assures that the variation of

with latitude produces a negligible Doppler shift in o-i.
We will assess these conditions only for wave 1, since
measurements of O-d/Oyare not available at the latitude
of wave 3.

From Fig. 6b of Limaye and Sromovsky (1991),
[O-ff/OyI _ 2 x 10 -5 sec -l at 45°S latitude. Hence, the first

condition is satisfied. To evaluate the second condition,
we need a value for By, which we obtained from Fig.
13. At egress, the raypath moved about 300 km in the

meridional direction between the 3 and 90 mbar pressure
levels, the vertical range of wave 1. Hence, I(O-ff/Oy)Syl_-
6 m sec- 1, comparable in magnitude to the vertically inte-
grated shear between these pressure levels (see above).
Comparing this with the constraint on c for wave 1 (>23
m sec- 1;Table IV), we conclude that the second condition
is also marginally satisfied. Thus, to lowest order, the
effect of meridional wind shear can be ignored. This con-

clusion is somewhat speculative since the wind speeds
derived by Limaye and Sromovsky (1991) pertain to the
troposphere, whereas wave 1 was observed in the strato-

sphere. However, the zonal winds appear to decay with
height at all latitudes (Conrath et al. 1991a) so that esti-
mates of IO-ff/Oy[in the troposphere may be upper bounds
on the stratospheric values.

When this inequality is violated, the zonal component of
fluid velocity, u', is sufficient to cause overturning of
surfaces of constant potential temperature, resulting in
superadiabatic temperature lapse rates. This condition
also shows that wave breaking is inherently nonlinear,
since the ratio lu'l/[o_/k - al, a measure of nonlinearity,
is of order unity at the breaking level (Walterscheid and

Schubert 1990). These considerations suggest that the lin-
ear theory should be applied only when the wave ampli-
tude is observed to grow exponentially with height, so
that wave breaking has not yet occurred. This appears to
be the case for wave 1 (cf. Figs. 8 and 15a). Conversely,
the apparent saturation of wave 3 (cf. Figs. 10 and 15b)

SUMMARY

We conclude with a summary of our principal results
(see also Abstract and Tables III-IV):

1. We applied digital filters and techniques of spectral
analysis to Voyager 2 radio occultation data, re-
vealing distinct, quasi-periodic temperature varia-
tions in the troposphere and stratosphere of Nep-
tune at both 61°N (ingress) and 45°S (egress).

2. Figures 8-11 show measured vertical profiles of the
most prominent wave-induced temperature pertur-
bations. The temperature oscillations have ampli-
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tudes of 0.1-1 K and vertical wavelengths of 1-10
km.

3. The horizontal wavelength most likely exceeds the

vertical wavelength by at least an order of magni-

tude for each wave observed here. This conclusion

follows from numerical simulations of radio occul-

tation measurements and consideration of a condi-

tion for atmospheric stability.

4. We confined our interpretation to two waves ob-

served in the stratosphere. Both are probably

inertio-gravity waves, since Rossby waves with

a vertical structure that matches the observations

would have implausibly small zonal phase speeds.

5. The exponential growth of wave amplitude with

height should result in wave breaking at pressures

less than 0.5 mbars for wave 1 (45°S). Dissipation

may already be occurring within the interval of

direct observations for wave 3 (61°N).

6. Wave dissipation could produce eddy diffusivities

as large as 50 m z sec- _. Comparisons with indepen-

dent estimates of this parameter suggest that waves

are a significant source of eddy mixing in Neptune's

upper stratosphere.

7. The wave forcing of the mean flow that accompa-

nies dissipation could alter the zonal winds by as

much as 9 m sec-1 per planet rotation. The waves

can thereby have a significant influence on the cir-

culation and thermal structure of Neptune's upper

stratosphere.

8. The results are seriously limited by our inability to

derive tighter constraints on the horizontal struc-

ture of the waves.

9. If the apparent saturation of wave 3 is due to dissi-

pation, its horizontal-to-vertical aspect ratio is - 17.

The values of Io-;I, Ke, and ]O-_/Ot I for wave 3 would

then approach the upper bounds given in Table IV,

and the value of Ic[ would be near its stated lower
bound.

10. The reliability of our results is constrained by limi-

tations of the standard, linear theory for atmo-

spheric waves. For example, the process of wave

dissipation is poorly understood, and estimates of

the wave-generated eddy diffusivity are therefore

suspect.
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